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Why Combustion 

•  83% of  U.S. energy comes from combustion of  fossil fuels 
•  National goals 

!  Reduce greenhouse gas emissions by 80% by 2050 
!  Reduce petroleum usage by 25% by 2020 

•  Meeting these goal requires a new generation of  high-efficiency, 
low emission combustion systems 
!  New designs for IC engines, turbines and burners 
!  New fuels 

•  Examples 
!  Engine designs to burn biodiesel for transportation 
!  Fuel flexible turbines for power generation 

•  Why exascale 
!  Current design methodologies are largely phenomenological 
!  Lack the science base needed to develop new devices / fuels 
!  Exascale computing will enable high-fidelity simulations of  

complex fuels at realistic turbulence and pressure conditions with 
quantified uncertainty 

!  Key element needed to develop and calibrate models needed for 
engineering design 

•  Use cases based on increasing pressure and fuel complexity 
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•  Fuel streams are rapidly evolving 
!  Heavy hydrocarbons  

•  Oil sands 
•  Oil shale 
•  Coal 

!  New renewable fuel sources 
•  Ethanol 
•  Biodiesel 

•  New engine technologies 
•  Direct Injection (DI) 
•  Homogeneous Charge  

Compression Ignition (HCCI) 
•  Low-temperature combustion 

•  Mixed modes of  combustion (dilute, 
high-pressure, low-temp.) 

•  Sound scientific understanding is 
necessary  to develop predictive, 
validated multi-scale models! 

Motivation:  Changing World of  Fuels and Engines 
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• Multi-scale modeling describes IC 
engine processes, from quantum 
scales up to device-level, continuum 
scales 

•  Needs: 
• Develop a general theoretical framework 
for transfer of information from one 
scale to the next 

• Use HPC to bridge the current gap 
between coarse-grained atomistic 
approaches and fine-grained continuum 
approaches 

 Multi-scale Modeling of IC engine processes 
 
 

 



Direct Numerical Simulation  
•  Used to perform first-principles-based 

DNS of reacting flows 

•  Solves compressible or low-Mach 
reacting Navier-Stokes equations 

•  High-fidelity numerical methods (high-
order finite difference and AMR 

•  Detailed reaction kinetics and 
molecular transport models 

•  Multi-physics (sprays, radiation and soot)  

•  Runs on all major platforms, scales well 
to 10-20 pflop machines 

DNS provides unique fundamental 
insight into gas-phase chemistry-
turbulence interactions 

DNS 
Physical 
models 

Engineering CFD 
codes (RANS, 

LES) 



Co-Design Objectives 

•  Goal of  ExaCT is to influence the sea-change in architecture 
and software of  next generation systems - driven by power and 
cost constraints - to be well-suited for combustion simulation 
!  Higher concurrency in low-power many-core, possibly heterogeneous 

nodes 

!  Performance based on memory access patterns and data movement,  

     not FLOPS 
!  High synchronization costs 

!  Reduced memory per core  

!  Increased disparity between  I/O and compute speed 

!  Machine complexity – fault tolerance in all aspects of  stack 



Major Themes for Combustion Co-design 

•  Integrate analysis with simulation 
!  Combustion simulations are data rich 
!  Writing data to disk for subsequent analysis is currently near infeasibility 
!  Integrate analysis and uncertainty quantification directly into simulation process 
!  Makes simulation look much more like physical experiments in terms of  

methodology 

•  Rethink implementation and analysis of  basic algorithms in terms of  
potential architectures 
!  Expose more concurrency 
!  Distributed AMR metadata  
!  Analysis of  algorithms has typically been based on a performance  FLOPS paradigm 

– can we analyze algorithms in terms of  a more realistic performance model 
•  Develop programming models more suited to new architectures 

!  MPI provides reasonable approach for coarse-grained parallelism but tools at fine-
grained level are inadequate 

!  We express codes in terms of  FLOPS when data layout and data movement control 
performance 

•  Evaluate performance impact of  hardware tradeoffs and provide input to 
vendors 



•  Iterative co-design loop (joint exploration of  hardware and algorithm space) 
•  Proxy applications: skeletal, node-level (compact apps and compute kernel apps) 

•  Abstract machine model – open architectural simulators, prototype hardware 

•  Data abstractions, programming models (DSL’s) and supporting runtime 

•  Bi-directional interface with vendors 

Co-Design Process 

Co-design Consortium Vendor Operation Plan, 2012 



•  Programming models 
–  Develop programming methodologies that allow us to express the 

algorithms 
•  Expressiveness 
•  Performance  
•  Execution model 

–  Evolve an abstract machine model 
•  Capture key aspects of  performance 
•  Simple enough to inform algorithm development 

–  Fault tolerance 

•  Simulators 
–  Tests of  alternative architectural features 
–  Develop to meet co-design theme requirements as needed 

•  Bi-directional interface to vendors  
 

CS Aspects 

9 Co-Design Review 



ExaCT Organizational Chart 
Internal Steering Comm. Management Team 

Director: Chen 
Deputy Director: Bell 

Project Manager:  Moreno 

External Advisory Board 

Kathy Yelick        Marc Snir 
Kwan-Liu Ma       Marsha Berger 
Vivek Sarkar 
Barney MacCabe   

Math  
Lead: Bell 

UQ  
Lead: Moser 

Simulators  
Lead: Shalf 
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PDE Solver  / UQ  Co-Design Team (Lead: Bell, UQ Lead:  Moser) 

In situ Scientific Data Management and Analytics / UQ  Co-Design Team (Co-Leads: 
Klasky/Pascucci) 

 

Combustion Science Driver and Requirements 
Lead: Chen  



Highlights from Cross-cut Areas 

•  PDE Solver Algorithms/Implementations 
•  Intrusive UQ 

•  SDMA and in situ Analytics/Viz. 
•  Programming Models 

•  Hardware Simulation 



Reacting Flow Simulation Methodology 
 

•  Physical processes 
!  Detailed chemical kinetics 

•  Highly nonlinear 

•  10’s-100’s of  species 

•  100’s or 1000’s of  reactions 

•  Rich internal flame structure 
!  High fidelity species transport 

•  Complex nonlinear parabolic systems 

!  Turbulent fluid mechanics 

•  Compressible, variable viscosity (full stress tensor) 

•  Need to resolve several decades of  scale 
– Domain -> integral scale -> Kolmogorov scale 

!  Radiation (optically thin) 

Internal structure of  methane 
flame:  53 species; 325 reactions 



Simulation Methodology: Combustion Requirements 

•  Target use cases are high-pressure 
flames with complex fuels 
!  Flames become much thinner as pressure 

is increased 
!  Chemical and transport parameters are not 

well-known 
!  Intermittency (e.g. ignition, turbulence) 

•  Requirements for methodology 
!  Adaptive mesh refinement 

•  Turbulence and flames have different 
resolution requirements 

!  Support multiple flow regimes 
•  Compressible Navier Stokes 
•  Low Mach number formulation 
•  Common framework 

!  Integrated UQ and in situ analytics 



Core Exascale Issues 

•  Basic discretization methodology 
!  Reduce memory movement and memory capacity / FLOP 
!  Expose more concurrency 
!  Express and manage data locality 
!  Reduce synchronization 
!  Analysis of  algorithm in terms of  NEW cost-model for abstract machine -- measure 

algorithmic complexity in terms of  costs of  memory and data movement instead of  
FLOPs 

•  Linear solvers 
!  Reduced communication / synchronization 

•  AMR 
!  Hierarchical metadata 
!  Data-movement aware operations (include cost of  data movement in regridding) 
!  Reduced synchronization 

•  All of  this issues need to be address in terms of  tradeoffs in architecture 
!  Internode network topology 
!  Intranode design 
!  Individual core characteristics 
 



Interface 
•  What are the key questions at the interface of  math, programming 

models and hardware? 
•  Horizontal data locality 

!  Control data layout on a node 
!  Data layout matched to intranode connectivity / topology 
!  Reduce, eliminate or localize cache coherence 
!  These require programming model to provide tools to express the relevant 

constructs 
•  Use type-system to express data layout and topology 
•  USE DSLs or other higher-level constructs to make locality implicit 

•  Vertical data locality 
!  Control data motion through cache/memory hierarchy (to processor and 

back) 
!  Maximize reuse of  data to reduce memory access 
!  Requires programming model support 

•  Constructs to make software managed memory and explicit data motion 
easier to use 



AMR at the Exascale 

•  AMR can be viewed as minimizing the number of  degrees of  
freedom needed to represent the solution 
!  An a priori good match to reduced memory exascale architectures 
!  Structured-grid AMR is naturally suited to hierarchical parallelism 

•  Domain is covered by large aggregate patches of  data 

•  Need to deal with algorithmic complexity 
!  Hierarchical treatment of  data metadata 

•  Regions of  decreasing granularity 
•  Only store details about your region and its neighbors 
•  AMR retains locality – it’s just more complex 

!  Regridding and dynamic load balancing more holistic 
•  Include all factors in estimating cost of  next step  

–  Cost of  data movement 
–  Heterogeneous node performance 

!  Restructure integration to reduce synchronization and increase concurrency 



Execution Model 

•  What is a good choice of  execution model?  How does best choice 
depend on architectural details? 

•  Current bulk synchronous approach is probably not the best choice 
!  Sources of  performance heterogeneity are increasing 

•  Examples of  heterogeneity include: 
–  Thermal-performance throttling 
–  Software fault-recovery (creates performance perturbations)  
–  Adaptive algorithms and non-uniform cost of  chemistry ODE 

solves  

•  Asynchronous models to tolerate heterogeneity 
!  Asynchronous task execution based model 
!  Data flow / functional model 
!  Open questions: 

•  At what granularity should we express the model? 
•  Do algorithms need to be changed to better reflect alternative models 



Development of  Combustion Proxy Apps  

•  Refactor compressible integration methodology, S3D, into the 
BoxLib framework  (S3D-Box) 
!  Establish baseline common data abstraction 

!  Prelude to adaptive implementation 

!  Expose underlying data dependencies  

•  Facilitates mapping onto alternative node architectures 
•  Enable deep dependency analysis for compiler transformations / 

DSL definition 

•  Define multigrid compact app 
!  Representative of  communication intensive parts of  algorithm 
!  Skeletonization to extract communication patterns 

•  Analyze impact of  network topology, latency and bandwidth on 
performance 



Proxy Apps, cont’d 

•  Develop compact apps for physical property evaluation and 
stencil operations 
!  Test different strategies for mapping data onto nodes 

!  Basis for evaluating node architecture options 

!  Extract key kernels for more detailed analysis 

•  Performance tuning/modeling  
•  Evaluation of  core-level architectural features 

•  Develop simplified AMR compact app 
!  Extract skeleton for analysis of  data movement / communication 

patterns 

!  Analyze impact of  network characteristics on AMR performance 

!  Baseline for refactoring core AMR toolset  



Uncertainty Quantification: Goals & Challenges 
 

•  Science Questions: How are predictions of  detailed turbulent flame 
dynamics (e.g. extinction) and average combustion properties (e.g. NOx) 
impacted by uncertainties in chemical reaction models? What new data are 
needed to reduce these uncertainties? 

•  UQ computational challenges arise because: 
!  Simulations are expensive 
!  There are many uncertain parameters 
!  Turbulence is chaotic 

•  Develop the exascale opportunities to address these issues: 
•  Use adjoints for sensitivity derivatives, but must evaluate possible time 

horizon, since linearized solutions grow exponentially 
•  Use polynomial chaos expansions but must evaluate utility for chaotic 

systems 



UQ: Methodology & Algorithms 

•  Adjoint formulation to be integrated in S3D-Box 
!  Adjoint-consistent numerical methods  

!  Adjoints are computed backward in time, linearized about forward 
solution  

!  Storage and staging of  check-point data needed for adjoints (SDMA) 

!  Possibility to perform adjoint analysis in local space-time domains to 
save storage (SDMA) 

•  Polynomial chaos formulation implementation in S3D-Box 
!  Low-level software support for PCE calculations (DSL's) 

!  Can attain high flop/memory access 

!  Address numerical issues with linear and non-linear solvers 
!  Assessment of  convergence of  PCE representation 

 



SDMA Technologies 
 

Hybrid Staging – Basics 

In Situ Processing Resources:    Execution Model:  
 
(1)  InLine or Helper Cores     (1) I/O Graphs: task-based analysis/viz 
(2)  Staging Nodes (+GPUs, NVRAM)  (2) Asynch. Data Movement: IB, Portals, … 
(3) Offline – post storage    `  (3) Managed Execution: Containers, … 
(4) Remote and Cloud Resources   (4) Cloud Access/Usage: S3/EC2 bindings 

DataTap => 
SmartTap => 
Staging Objects => 
Task Containers 
 
Assume: ADIOS APIs 

Volume rendering can be performed in situ 
using < 1% of  simulation time, providing 
insight into variable interactions. 

Topological methods provide compact 
representations, 
creating drastic data  
reductions 

Hybrid staging allows visualization and analysis 
components to be easily programmed so that some 
are executed on cores where the application is 
running, and some are executed on a remote staging 
area, which is all on the same HPC resource. 



SDMA High Level Goals 

•  Co-design the knowledge discovery process for exascale combustion 
science 

•  Reduce data movement required for downstream analysis & exploration 
!  Characterize features of  interest efficiently using topological analysis 

techniques  
!  Visualize data with embedded topological features  

•  Abstract I/O, visualization and analysis through a componentized 
middleware and utilize a SOA approach to accelerate in transit tasks 

•  Study communication and node-level behaviors and understand 
tradeoffs for the SDMA suite of  routines  

•  Integrate DSL/programming model abstractions into visualization & 
analytics codes to abstract hardware-specific optimizations 

•  Support in transit processing for integration of  UQ within the SDMA 
infrastructure 



S3D with Staging 

•  ADIOS is being implemented as a Service Oriented Architecture 
!  Create an environment where applications can abstract data movement/IO 

as read/writes/queries 

•  Exploit complex-memory hierarchies with Hybrid Data Staging to: 
–  Decrease the gap between CPU and IO speeds 
–  Dynamically deploy and execute data analytical or pre-processing operations 

either in-situ or in-transit 

–  Improved IO write performance 



Co-design the Analytics Pipeline 

•  Optimization:  
•  Where/How should analytics be 

run? 
!  Inline with simulation? 
!  Separate cores? Helper cores? 
!  Separate staging nodes? 
!  Offline? 

•  Guided by what metrics? 
!  Performance: Total Execution Time 

 of  both simulation and analytics 
!  Cost: CPU hours charged for simulation and analytics 
!  Time to Data: Delay between data generation and analytics 

results 
!  Data movement ~ Power consumption 



Visualization Within SDMA 
 

•  Goals: 
–  Define initial compact applications  

•  Representative parallel visualization algorithms for simulations,  
UQ, and topological analysis 

–  Connect visualization with SDMA system as auxiliary 
service 

•  Research Topics: 
–  Mechanisms for visualization routines to access data from 

simulations, UQ, and topological analysis 
–  Mechanisms for visualization routines to save and transfer 

results 
–  Characterization of  data movement and communication of  

visualization routines within SDMA 
•  Programming model  
•  Architecture simulation 



Previous In-Situ Visualization Implementation 

Simulation 

Time t Time t + !t 

Simulation 

Post Processing 

In-Situ Visualization 

void s3drender_init_( 
  int *myid, int *gcomm, 
 
  double *species, 
  char *speciesNames,  

  
  double *loc,  
 
  double *x,  *y,  *z, 
  int *nx, *ny,  *nz, 
  int *npx,  *npy,  *npz,  
 
  int neighbors[6]) 

MPI Communicator 

pointer to local scalar variable 

size and coordinates of  
global domain 

and local partition 

neighbor processors 

pointer to local particle data Simulation Visualization 



Current Initial Integration Effort 

Simulation Visualization 
ADIOS 

s3d_adios_render_init_() { 
   ADIOS_FILE *f  = adios_fopen(…); 
   ADIOS_GROUP *g = adios_gopen(…); 
 
   ADIOS_VARINFO *v = adios_inq_var(…); 
 
   v->dims[0],  v->dims[1],  v->dims[2]; 
 
   adios_read_var(…); 
 
   … 
 
} 

ADIOS file and group handles 

ADIOS variable information 

size of global domain 

pointer to local variable  

 MPI communicator and  
domain partition are decided  

by visualization 

Visualization 



Current Initial Integration Effort 

•  Visualization Result 
!  Simulation: Jet-in-Cross-Flow 

!  Variable: H2 

!  Domain Grid: 1408x1080x1100 

!  Directly render data from 
ADIOS BP file through ADIOS 
APIs 



•  “Abstraction-driven” co-design 
–  Fundamental in the design of  

domain-specific languages (DSLs) and 
supporting runtimes 

–  Iterative process from the hardware 
“up” and the application “down” 

•  Incorporation of  auto-tuning  to 
produce better code 

•  Development of  compact-apps key 
to co-design of  abstractions and 
understanding implications of  
architectures 

 

Programming Model Overview 
 

T
ra

di
tio

na
l H

PC
 S

ta
ck

 

Applications 

Language(s) 

Runtime 

Compiler 

Hardware 

Operating Sys. 

Applications 

Language(s) 

Runtime 

Compiler 

Hardware 

Operating Sys. C
o-

D
es

ig
n 

St
ac

k 

T
ra

di
ti

on
al

 H
PC

 S
ta

ck
 

Note: No coverage in OS space… 

PDEs UQ SDMA/Vis 

Hardware 

Shared Abstractions 

Domain 
Abstractions 

Domain 
Abstractions 

Domain 
Abstractions 

 
 

Domain Abstractions 

Combustion 



Programming Models 
  Overview – Domain-Specific Languages 

Performance 

Productivity Generality 

DSLs 

•  Fundamental trade-off  is 
generality vs. specialization 

•  Focus on embedded DSLs: a 
language that in some fashion extends 
an existing general-purpose language 

•  Example: Liszt (Stanford) 
–  Single source, multiple targets 

–  See SC11 paper 

 

- Assumes portability… 



Overall CoDesign Flow 
Automatic Generation of  Skeletons for Rapid Analysis 

32 



Overall CoDesign Flow 
Automatic Generation of  Skeletons for Rapid Analysis 

33 

We are talking 
about this part 

right now  



CECDC CoDesign Tools Overview 
Architectural Simulation to Accelerate CoDesign 

SST 

•  System level 
models 

ACE 

•  Node level 
emulation 

ROSE 
•  Application 

Analysis 

ROSE Compiler: Enables deep analysis of 
application requirements, semi-automatic 
generation of skeleton applications, and code 
generation for ACE and SST. 
 
ACE Node Emulation: Rapid design synthesis 
and FPGA-accelerated emulation for rapid 
prototyping cycle accurate models of manycore 
node designs. 
 
SST Macro System Simulation: Enables system-
scale simulation through capture of application 
communication traces and simulation of large-
scale interconnects. 
 
SST Micro Software Simulators: Software 
simulation for node-level simulation 

 
 

SST 

ACE 

ROSE 

CoDEx: CoDesign For Exascale 
 

ASCR-funded Simulation 
Infrastructure Project 

SST: Structure Simulation Toolkit 
 

NNSA-funded Simulation Tools 
(ASC Program) 



Role of Architectural Simulation 

–  Simulate hardware before it is built! 

–  Break slow feedback loop for system designs 
–  Protect vendor IP 

–  Insert applications and algorithms into the tightly 
coupled hardware CoDesign process  

Cycle Time!

1-2 days!
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Architectural Simulation Plan 
 

•  Validate Simulation Infrastructure 
!  We are using predictive simulation capability to understand the consequence of  

hardware/software trade-offs in co-design 
!  Therefore must ensure it is correctly predicting hardware performance and energy 

(V&V) 
•  Interconnect Simulation 

!  Collect communication traces to understand existing codes 
!  Generate communication skeletons to enable extrapolation of  traces for future systems 

•  Node Simulation 
!  Bring up proxy apps (S3D & LMC kernels and compact apps) on simulator compilers 
!  Study opportunities for integrating more computation in memory system and scalable 

alternatives for cache coherence and consequences to language design 
•  Crosscutting issues 

!  Establish Vendor Interactions and collaborations 
!  Develop common set of  metrics and parameters for Abstract Machine Model for target 

exascale systems (define in Abstract Machine Model “Living Document”) 
!  Integration of  Node simulation with Interconnect simulation 
!  Integration/leverage other DOE-funded Exascale Research (Execution Models, Data 

Movement Dominates, CoDEx, SUPER) 



Integrated Simulation Tools Environment 

SST/macro 

skeleton 
app 

sy
st

em
C

 

PhoenixSim 

DRAMsim2 FLASHsim 

Address 
Translation 

Compute/Processor 
Model 

(tensilica, m5, gpu…) 

Workload 
Translation 

kernels 

SystemC 

SystemC 

SystemC 



Flavors of  Structural Simulation Toolkit (SST) 

Entire Machine Whole Node Single Processor 

SST Micro Simulator 
(Processor Core, Memory,  
single-GPU) 

SST Macro Simulator 
(Multi-node, Interconnect 



Initial SST Results 

•  Focus on initial serial compact apps in SST Micro 

•  Serial S3D compact app running on GEM5 simulator 
!  AMD 2.90GHz K-10 core, A8-3850 (2011) Processor 

!  Code compiled with gfortran 4.4, -O3 

!  Simulated runtime - 2.609 seconds 

!  Benchmarked runtime - 2.857 seconds 
!  Error - 8.68% 



Initial SST Results 

•  SST Micro simulator results show: 
!  Very low L1, L2 miss rates - less than 0.1% 

!  Instruction breakdown to CPU inits: 

•  Integer arithmetic - 55.32% 

•  Floating-point - 18.15% 

•  Memory reads - ~20% 
•  Memory writes - ~6.46% 



Approaches to Managing Vendor Interactions 
•  The “Wall” 

!  Throw compact apps (and other items) over the wall for vendors to consider 
!  Or vendor asks us to answer questions like “how big should the cache be?” or evaluate 

feature to help with “sort” operations (normally a cache-buster) 

•  IP Firewall 
!  One person per vendor interaction gets deep-NDA (then permanently contaminated) 

•  Collaborate with the “research division” 
!  Resolving who owns patent rights  
!  Still danger of  IP contamination 

•  Public/Private repeatable experiments (we are building towards this model) 
!  Use open simulators + compact apps to do experiments in the open 
!  Provide those apps + simulation conditions to vendors so they can repeat the experiment 

using their internal resources 
!  If  results agree, we can influence their design choices  
!  If  they disagree, they can identify what we are missing without exposing IP 

•  Component Sharing: (can they share their “secret sauce” as black-box?) 



Thanks! 

•  Questions? jhchen@sandia.gov 
•  Stay tuned for our website in mid-April: 

 exactcodesign.org 


